
 

 

Chapter 4 

 

The Three-Moment 

Equations-I 



 

Instructional Objectives 

After reading this chapter the student will be able to 
1. Derive three-moment equations for a continuous beam with unyielding 

supports. 
2. Write compatibility equations of a continuous beam in terms of three 

moments. 
3. Compute reactions in statically indeterminate beams using three-moment 

equations. 
4. Analyse continuous beams having different moments of inertia in different 

spans using three-moment equations. 

 
 

Introduction 

Beams that have more than one span are defined as continuous beams. 
Continuous beams are very common in bridge and building structures. Hence, 
one needs to analyze continuous beams subjected to transverse loads and 
support settlements quite often in design. When beam is continuous over many 
supports and moment of inertia of different spans is different, the force method of 
analysis becomes quite cumbersome if vertical components of reactions are 
taken as redundant reactions. However, the force method of analysis could be 
further simplified for this particular case (continuous beam) by choosing the 
unknown bending moments at the supports as unknowns. One compatibility 
equation is written at each intermediate support of a continuous beam in terms of 
the loads on the adjacent span and bending moment at left, center (the support 
where the compatibility equation is written) and rigid supports. Two consecutive 
spans of the continuous beam are considered at one time. Since the compatibility 
equation is written in terms of three moments, it is known as the equation of three 
moments. In this manner, each span is treated individually as a simply supported 
beam with external loads and two end support moments. For each intermediate 
support, one compatibility equation is written in terms of three moments. Thus, 
we get as many equations as there are unknowns. Each equation will have only 
three unknowns. It may be noted that, Clapeyron first proposed this method in 
1857. In this lesson, three moment equations are derived for unyielding supports 
and in the next lesson the three moment equations are modified to consider 
support moments. 

 
 

Three-moment equation 

A continuous beam is shown in Fig.12.1a. Since, three moment equation relates 
moments at three successive supports to applied loading on adjacent spans, 

consider two adjacent spans of a continuous beam as shown in Fig.12.1b. M L , 

MC and M R respectively denote support moments at left, center and right 

supports. The moments are taken to be positive when they cause tension at 



 

bottom fibers. The moment of inertia is taken to be different for different spans. In 

the present case I L and I R denote respectively moment of inertia of; left and 

right support and lL and lR are the left and right span respectively. It is assumed 

that supports are unyielding. The yielding of supports could be easily 
incorporated in three-moment equation, which will be discussed in the next 

lesson. Now it is required to derive a relation between M L , MC and M R . This 

relationship is derived from the fact that the tangent to the elastic curve at C is 

horizontal. In other words the joint C may be considered rigid. Thus, the 
compatibility equation is written as, 

 

CL  CR  0 (12.1) 
 

The rotation left of the support C , CL and rotation right of the support C , 

 CR may be calculated from moment area method. Now, 
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Note that the actual moment diagram on span  LC  is broken into two parts (1) 

due to loads applied on span  LC  when it is considered as a simply supported 

beam and, (2) due to support moments. In the above equation AL and AR 

denote respectively area of the bending moment diagrams due to applied loads 

on left and right supports. xL and xR denote their respective C.G.(center of 

gravity) distances from the left and right support respectively. Similarly, 
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Substituting the values of  CL and CR in the compatibility equation (12.1), 
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which could be simplified to, 
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 L   L R   R  R  R L L 

 

The above equation (12.5) is known as the three-moment equation. It relates 

three support moments M L , MC and M R with the applied loading on two 

adjacent spans. If in a span there are more than one type of loading (for 
example, uniformly distributed load and a concentrated load) then it is simpler to 
calculate moment diagram separately for each of loading and then to obtain 
moment diagram. 



 

 



 

Alternate derivation 

The above three moment equations may also be derived by direct application of 

force method as follows. Now choose M L , MC and the MR , the three support 

moments at left, centre and right supports respectively as the redundant 
moments. The primary determinate structure is obtained by releasing the 
constraint corresponding to redundant moments. In this particular case, inserting 
hinges at L , C and R , the primary structure is obtained as below (see Fig. 12.2) 

 

 
 

 

Let displacement (in the primary case rotations) corresponding to rotation MC be 

 L , which is the sum of rotations CL and CR . Thus, 
 

 L  CL  CR (12.6) 
 

It is observed that the rotations  CL and CR are caused due to only applied 

loading as shown in Fig.12.2.This can be easily evaluated by moment area 
method as shown previously. 
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In the next step, apply unit value of redundant moments at L , C 

calculate rotation at C (i.e. flexibility coefficients). 
and R and 
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In the actual structure the relative rotation of both sides is zero. In other words 
the compatibility equation is written as, 

 

 L  a21 M L  a22 MC  a23 M R  0 (12.9) 
 

Substituting the values of flexibility coefficients and L in the above equation, 
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when moment of inertia remains constant i.e. 
simplifies to, 

IR  IL  I ,the above equation 
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Example  

L lL   2MC lL 
 

lR M R lR 
   

6 AR xR 
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 
6 AL xL 

lL 

 

(12.11) 

A continuous beam ABCD is carrying a uniformly distributed load of 1 kN/m over 
span ABC in addition to concentrated loads as shown in Fig.12.4a. Calculate 

support reactions. Also, draw bending moment and shear force diagram. Assume 
EI to be constant for all members. 



 

 

 
 

From inspection, it is assumed that the support moments at A is zero  and 
support moment at C , 

MC  15 kN.m (negative because it causes compression at bottom at C ) 

Hence, only one redundant moment M B needs to be evaluated. Applying three- 

moment equation to span ABC , 
 

2MC 10  10 MC 
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(1) 

 

The bending moment diagrams for each span due to applied uniformly distributed 
and concentrated load are shown in Fig.12.4b. 



 

Equation (1) may be written as, 
 

 
40M  150   

6  83.33  5 
 

6 125  5 
 

6  83.33  5 
   

B 
10

 
10 10 

Thus, 

MB  18.125 kN.m 

After determining the redundant moment, the reactions are evaluated by 
equations of static equilibrium. The reactions are shown in Fig.12.4c along with 
the external load and support bending moment. 



 

 



 

In span AB , RA can be calculated by the condition that 

 
RA 10 10  5 10  5  18.125  0 

M B  0 . Thus, 

 

RA  8.1875 kN 

 
RBL  11.8125 kN 






Similarly from span BC , 

 
RC  4.7125 kN 

 
RBR  5.3125 kN 

 



The shear force and bending moment diagrams are shown in Fig.12.4d. 

 

Example  

A continuous beam 

 

ABC 

 

is carrying uniformly distributed load of 2 kN/m as 

shown in Fig.12.5a.The moment of inertia of span AB is twice that of span BC . 

Evaluate reactions and draw bending moment and shear force diagrams. 



 

 
 

By inspection it is seen that the moment at support  C  is zero. The support 
moment at  A  and  B   needs to be evaluated .For moment at B , the compatibility 



 

A 

equation is written by noting that the tangent to the elastic curve at B  is 
horizontal .The compatibility condition corresponding to redundant moment at A 

is written as follows. Consider span AB as shown in Fig.12.5b. 
 

The slope at A ,  A may be calculated from moment-area method. Thus, 
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Now, compatibility equation is,  

 A  0 

 

 
(2) 

 

It is observed that the tangent to elastic curve at A remains horizontal. This can 

also be achieved as follows. Assume an imaginary span AA of length L left of 
support A having a very high moment of inertia (see Fig. 12.5c). As the  
imaginary span has very high moment of inertia, it does not yield any imaginary 

span has very high moment of inertia it does not yield any M 
EI 

diagram and 

hence no elastic curve. Hence, the tangent at A to elastic curve remains 
horizontal. 
Now, consider the span AAB , applying three-moment equation to support A , 
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The above equation is the same as the equation (2). The simply supported 
bending moment diagram is shown in Fig.12.5d. 

 

 

Thus, equation (3) may be written as, 
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Now, consider span ABC , writing three moment equation for support B , 
 

M 
10  

 2M 
 

 

10 
 

5  
  

6 166.67  5 
 

6  20.837  2.5 
 

    

A  
2I 


B  

2I I 

 2I  (10) I  (5) 

   


5M A  20M B  250  62.5 

 312.5 

 

(5) 

 

Solving equation (4) and (5), 
 

M B    6.25 kN.m 

M A    37.5 kN.m 
 

The remaining reactions are calculated by equilibrium equations (see Fig.12.5e) 



 

 
 

In span AB , M B  0 

RA 10  37.5  2 10  5  6.25  0 



 

 

 

 

 
Similarly from span BC , 

RA   13.125  kN 

 
RBL   6.875  kN 

 
 

RC  3.75 kN 

 
RBR  6.25 kN 











The shear force and bending moment diagrams are shown in Fig. 12.5f. 

 
 

Summary 

Here the continuous beam with unyielding supports is analyzed by three- 
moment equations. The three-moment equations are derived for the case of a 
continuous beam having different moment of inertia in different spans. The three- 
moment equations also belong to force method of analysis and in this case, 
redundants are always taken as support moments. Hence, compatibility 
equations are derived in terms of three support moments. Few problems are 
solved to illustrate the procedure. 



 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 
 
 

Chapter 5 

 

 

The Three-Moment 
Equations-II 



 

Instructional Objectives 

After reading this chapter the student will be able to 
1. Derive three-moment equations for a continuous beam with yielding supports. 
2. Write compatibility equations of a continuous beam in terms of three 
 moments. 
3. Compute reactions in statically indeterminate beams using three-moment 
 equations. 
4. Analyse continuous beams having different moments of inertia in different 
 spans and undergoing support settlements using three-moment equations. 

 
 

Introduction 

Previously, three-moment equations were developed for continuous beams with 
unyielding supports. The support may settle by unequal amount during the life 
time of the structure. Such future unequal settlement induces extra stresses in 
statically indeterminate beams. Hence, one needs to consider these settlements 
in the analysis. The three-moment equations developed previously could be 
easily extended to account for the support yielding. In the next section three-
moment equations are derived considering the support settlements. In the end, 
few problems are solved to illustrate the method. 

 
 

Derivation of Three-Moment Equation 

Consider a two span of a continuous beam loaded as shown in Fig.13.1. Let M L , 

MC  and M R be the support moments at left, center and right supports 

respectively. As stated in the previous lesson, the moments are taken to be 

positive when they cause tension at the bottom fibers. I L and I R denote moment 

of inertia of left and right span respectively and lL and lR denote left and right 

spans respectively. Let  L ,  C and  R be the support settlements of left, centre 

and right supports respectively.  L ,  C and  R are taken as negative if the 

settlement is downwards. The tangent to the elastic curve at support C makes 

an angle  CL at left support and CR at the right support as shown in Fig. 13.1. 

From the figure it is observed that, 



 

 
 

CL   CR (13.1) 
 

The rotations  CL and CR due to external loads and support moments are 

calculated from the M 
EI
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The rotations of the chord L'C' and C' R' from the original position is given by 
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From Fig. 13.1, one could write, 



 

 

CL    CL    CL 

CR   CR   CR 

(13.4a) 

 
(13.4b) 

 

Thus, from equations (13.1) and (13.4), one could write, 
 

 CL  CL  CR    CR 

 

 
(13.5) 

 

Substituting the values of CL , CR , CL and  CR in the above equation, 
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This may be written as 
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            (13.6) 
 

The above equation relates the redundant support moments at three successive 
spans with the applied loading on the adjacent spans and the support 
settlements. 

 

Example 1  

Draw  the  bending  moment  diagram  of  a  continuous  beam BC 

 

shown in 
Fig.13.2a by three moment equations. The support  B settles by 5mm below  A 

and C . Also evaluate reactions at A ,  B  and C .Assume  EI   to be constant for all 

members and E  200 GPa , I  810
6
 mm

4
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MC    I   R  R   R L   L  L   R 

 



 

 
 

Assume an imaginary span having infinitely large moment of inertia and arbitrary 

span L left of A as shown in Fig.13.2b . Also it is observed that moment at C is 
zero. 



 

R 

The  given  problem  is  statically  indeterminate  to  the  second  degree.  The 

moments M A and M B  ,the  redundants  need  to  be  evaluated.  Applying  three 

moment equation to the span A’AB, 
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Again applying three moment equation to span ABC the other equations is 

obtained. For this case,  L  0 ,  C 

downwards) and  R  0 . 

 5 103 m (negative as the settlement is 
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Solving equations (2) and (3), 
 

MB   1.0 kN.m 

MA   4.0 kN.m 

 

 

 
(4) 

 

Now, reactions are calculated from equations of static equilibrium (see 
Fig.13.2c). 
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Thus,  
RA 

RBL 

RBR 

R 

 2.75 kN 
 1.25 kN 
 4.25 kN 
 3.75 kN 

C 

The reactions at B, 



 

RB  RBR  RBL  5.5 kN (5) 
 

The area of each segment of the shear force diagram for the given continuous 
beam is also indicated in the above diagram. This could be used to verify the 
previously computed moments. For example, the area of the shear force diagram 
between A and B is 5.5 kN.m .This must be equal to the change in the bending 

moment between A and D, which is indeed the case ( 4 1.5  5.5 kN.m ). Thus, 

moments previously calculated are correct. 
 

Example 2  

A continuous beam 

 

ABCD 

 

is supported on springs at supports 

 

B and C as 

shown in Fig.13.3a. The loading is also shown in the figure. The stiffness of 

springs is k B  
EI 

20 
and k  

EI 
C
 

30
 

.Evaluate support reactions and draw bending 

moment diagram. Assume EI to be constant. 



 

 
 

In the given problem it is required to evaluate bending moments at supports B 

and C . By inspection it is observed that the support moments at A and D are 

zero. Since the continuous beam is supported on springs at B and C , the 

support settles. Let RB and RC be the reactions at B and C respectively. Then 

the support settlement at B   and  C   are   
RB

 

k B 

and 
RC 

kC 

respectively. Both the 

settlements are negative and in other words they move downwards. Thus, 
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Now applying three moment equations to span ABC (see Fig.13.2b) 
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 B  

I I 
 C  

I 
 I  4 I  4 

  
4EI 4 




       

 


Simplifying,  

16M B  4MC 

 

 124  60RB  45RC 

 

 
(2) 

 

Again applying three moment equation to adjacent spans BC and CD , 
 

(6  9  2  6  3  
2 
 1) 

 
 


 

30RC 
 

20RB 


M 
4  

 2M 
 

 

4 
 

4  
  

60 




  

3  6E EI EI  
 30RC 




B  
I 
 C  

I I 


I
 I  4 

 
4 4EI 




    



4M B  16MC 





 90  90RC  30RB 





(3) 
 

In equation (2) and (3) express RB 

Fig.13.2c) 

and RC in terms of M B and M C (see 

 
RA  8  0.25M B 

RBL 

RBR 

 8  0.25M B 

 5  0.25MC 


 0.25M B 

 




(4) 

RCL   5  0.25M B  0.25MC 

RCR 

R 

 2  0.25MC 

 6  0.25M 




D C 

 

Note that initially all reactions are assumed to act in the positive direction (i.e. 
upwards) .Now, 

 

RB  RBL  RBR  13  0.5M B  0.25MC 

 

RC  RCL  RCR  7  0.25M B  0.5MC (5) 
 

Now substituting the values of RB and RC in equations (2) and (3), 
 

16M B  4MC  124  6013  0.5M B  0.25MC   457  0.25M B  0.5MC 



 

Or,  

57.25M B  33.5MC 

 
 

 341 

 

 
(6) 

 

And from equation 3, 

4M B  16MC  90  907  0.25M B  0.5MC   3013  0.5M B  0.25MC 


Simplifying,  

 33.5M B  68.5MC 

 

 
 150 

 

 
(7) 

 

Solving equations (6) and (7)  

MC  7.147 kN.m 

MB  10.138 kN.m 

 

 
 

(8) 

 

Substituting the values of M B and M C in (4),reactions are obtained. 
 

RA  10.535 kN 

RBR  4.252 kN 

RCR  0.213 kN 

RB  9.717 kN 









RBL  5.465 kN 

RCL  5.748 kN 

RD  7.787 kN 

and RC  5.961 kN 










The shear force and bending moment diagram are shown in Fig. 13.2d. 



 

 



 

 

 4 

Example 3  

Sketch the deflected shape of the continuous beam ABC of example 1. 

The redundant moments M A and M B for this problem have already been 

computed in Example 1 above.They are, 
 

MB   1.0 kN.m 

MA   4.0 kN.m 
 

The computed reactions are also shown in Fig.13.2c.Now to sketch the deformed 
shape of the beam it is required to compute rotations at B and C. These joints 
rotations are computed from equations (13.2) and (13.3). 

For calculating A , consider span A’AB 

 
 A   AR   AR 

 

 
AR xR 

 
M BlR 
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M AlR 

 
  B   A 
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
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3
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3
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  




 0 

 

For calculating BL , consider span ABC 

 
 BL   BL   BL 

(1) 

 

 AL xL M AlL M BlL 



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

  EI l 6EI  3EI    l 
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
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   

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For  BR 

 1.25 10 3 radians (2) 

 
consider span ABC 



 

   

  10.67  2 1 4   5 10
3
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1.6 10
3
  
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3
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   0  
4 




 4 1.6   


 1.25 103 radians (3) 

  
  10.67  2   


    1 4  

 
  B   C 



C 
1.6 10

3
  4 1.6 10

3
  3 

  
4 




 3.75 103 radians. (4) 
 

The deflected shape of the beam is shown in Fig. 13.4. 



 

 



 

Summary 

Earlier ,the continuous beams with unyielding supports are analysed using three- 
moment equations. Here, the three-moment-equations developed in the previous 
lesson are extended to account for the support settlements. The three-moment 
equations are derived for the case of a continuous beam having different moment 
of inertia in different spans. Few examples are solved to illustrate the procedure 
of analysing continuous beams undergoing support settlements using three-
moment equations. 
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